Comienza el diseño de la misión a Europa. Por fin navegamos hacia un nuevo océano

 

recreación de la misión a Europa


La NASA acaba de seleccionar los nueve instrumentos que formarán parte de la misión a la luna de Júpiter, Europa

La sonda intentará descubrir si la helada luna tiene las condiciones suficientes para poder albergar vida. El inmenso océano de agua líquida existente debajo de una gruesa capa de hielo, la presencia de sustancias orgánicas y la existencia de fuentes de energía provocadas por las intensas mareas gravitatorias de Júpiter convierten a Europa en el santo grial de la búsqueda de vida fuera de nuestro planeta. 

La misión consistirá en una sonda dotada de paneles solares que orbitará Júpiter realizando numerosos sobrevuelos al satélite. Estos acercamientos durarán unos tres años, en los cuales la sonda pasará unas 45 veces a una distancia que variará de los 25 a los 2.700 kilómetros. 

La selección de instrumentos científicos engloba espectrómetros que nos hablarán de la composición de Europa y cámaras de alta resolución que mapearan hasta el 90% de la superficie. 

 

superficie de Europa.Sonda Galileo

 
Un radar se encargará de penetrar la gruesa capa de hielo y estimar su espesor. Un magnetómetro medirá la fuerza y dirección del campo magnético que permitirá conocer la profundidad y la salinidad de su océano. 

Un instrumento capaz de determinar la temperatura en superficie buscará recientes erupciones de agua más caliente que la helada corteza del satélite. 

Otra prioridad de la misión será confirmar las observaciones del Hubble donde aparecía vapor de agua sobre el polo sur, una fuerte evidencia de material eyectado desde el océano interior al exterior. De confirmarse la existencia de estos «jets» se intentaría sobrevolar alguno de ellos y estudiar su composición. Una manera de estudiar el interior de Europa sin tener que atravesar 20 kilómetros de duro hielo. 

Por fin parece que nos vamos a Europa, por fin empezamos a explorar uno de los lugares más apasionantes del sistema solar, buscamos vida…

Fuente: Nasa news

 

La vida busca más vida. Agua y compuestos orgánicos por todo el Universo

Hubo un tiempo en el que el ser humano pensó que la Tierra era el centro del Universo, hubo un tiempo en el que la humanidad creyó que el cosmos entero estaba fabricado para ella, hubo una época en la que creímos que la vida sólo apareció en nuestro planeta…

compuestos orgánicos en el disco protoplanetario de MWC 480

Las noticias se suceden, una detrás de otra. A las claras intenciones de la NASA, de considerar como prioridad los océanos subterráneos de nuestro sistema solar en la búsqueda de vida, se suma hoy el anuncio del descubrimiento de moléculas orgánicas complejas por parte del telescopio ALMA en un sistema protoplanetario. 

El disco de polvo y gas, a partir del cual se forman los planetas, que rodea a una estrella joven llamada MWC 480 contiene grandes cantidades de cianuro de metilo (CH3CN), una molécula compleja basada en el carbono. También se ha encontrado ácido cianhídrico (HCN) otro representante de los compuestos orgánicos. 

Moléculas idénticas a las que dieron lugar a la vida en nuestro planeta en las partes más  exteriores del disco protoplanetario de MWC 480, cianuros ricos en enlaces carbono-nitrógeno, la base de los aminoácidos y las proteínas situados a 455 años luz de nuestro sistema, orgánicos en la zona equivalente a nuestro cinturón de Kuiper densamente poblado por cometas y planetesimales  esperando pacientemente una oportunidad para sembrar con los bloques de la vida los planetas que se vayan formando en el interior del sistema… una relato que quizás se esté repitiendo a lo largo y ancho de nuestro universo una y otra vez. 

ALMA nos habla de discos protoplanetarios eficaces a la hora de formar compuestos orgánicos, y no solo eso, eficientes a la hora de protegerlos y de permitir su evolución a moléculas cada vez más complejas. Nos cuenta que los mismos procesos químicos que se dieron en nuestro entorno se dan en otros lugares de nuestro cosmos. 

Pensar que ninguna de estas combinaciones de tiempo y reaccciones químicas ha dado lugar a algo parecido a lo que conocemos como vida empieza a ser difícil de aceptar. La próxima década será fundamental para pasar dejar atrás todas estas hipótesis. Estamos en el buen camino, agua y compuestos orgánicos allá donde miremos, quizás sea una sonda dirigida a un océano de Europa o Encelado, quizás el telescopio espacial James Webb apuntando a la atmósfera de un exoplaneta cercano, quizás una muestra del subsuelo marciano,… me pregunto que soluciones habrá tomado la evolución en ambientes radicalmente diferentes al nuestro. 

El hecho de imaginar un universo sin un solo microorganismo fuera de nuestra atmósfera roza lo absurdo, Sagan lo explicó mejor que yo «a veces creo que hay vida en otros planetas, y a veces creo que no. En cualquiera de los dos casos la conclusión es asombrosa.»

Fuente: Eso news

Ganímedes podría tener un océano de agua salada en su interior

Estructura interna de Ganímedes



El mayor de los satélites de Júpiter alberga una sorpresa debajo de su helada superficie. Según observaciones realizadas por el telescopio espacial Hubble en su interior podria existir un océano global de agua salada, estamos hablando de más agua que la existente en toda la superficie de nuestro planeta. 

Ganímedes es la única luna con su propio campo magnético, el cuál genera auroras en las proximidades de ambos polos del satélite. Pero ahora debemos tener en cuenta que Ganímedes atraviesa el enorme campo magnético de Júpiter algo que debería alterar esas auroras de las que hablábamos significativamente. 



Auroras captadas por el Hubble superpuestas sobre una captura de Ganímedes

Las observaciones en el espectro ultravioleta del Hubble nos muestran que la influencia del campo magnético de Júpiter existe, pero no es tan grande como se esperaba, algo lo atenua… Un océano salado en el interior del satélite disminuiría de 6 a 2 grados las variaciones de las auroras, un océano salado de unos 100 kilómetros de grosor, 10 veces más profundo que cualquiera existente en la Tierra. 

Ayer conocíamos la presencia de fuentes hidrotermales en Encelado, un satélite de Saturno, hoy vemos que puede haber un enorme océano salado en Ganímedes, tenemos otro en Europa y un mundo con una atmósfera y mares repletos de compuestos orgánicos como es Titán… Tenemos al alcance todo un elenco de lunas con posibilidades de albergar vida a pocos años de viaje de nuestro planeta, lunas heladas con sustancias orgánicas, agua líquida y fuentes de calor… justo lo que dió origen a la vida en nuestro planeta. No sé que más argumentos necesitamos para lanzarnos como posesos a estudiarlas, ¿qué más pruebas hacen falta para comenzar a investigar lo que sería el mayor descubrimiento jamás realizado por nuestra especie?

Fuente: Hubble site

Compuestos orgánicos detectados en Titán podrían ser biomarcadores

IMG_5157.PNG

Una sola observación de apenas tres minutos ha bastado al telescopio Atacama Large Millimeter Array (ALMA) para obtener la imagen que abre el post.

Lo que vemos es el descubrimiento de partículas organicas en las capas altas de la atmósfera del satélite de Saturno. Las moléculas en cuestión son el isocianuro de hidrogeno (HNC) y el cianoacetileno (HC3N).

Que Titán es un mundo a rebosar de partículas orgánicas ya lo sabiamos, la sonda Cassini lleva años mandando datos sobre los increíbles ciclos del etano y el metano presentes en la luna, fotos sobre sus lagos,ríos, su atmósfera gruesa y opaca a las miradas que pretenden investigarla en el espectro de la luz visible… pero el último hallazgo es algo totalmente diferente…

Las moléculas descubiertas por ALMA deberían estar distribuidas al azar por toda la atmósfera, y no lo están.

IMG_5158.JPG

Las imágenes nos revelan la distribución de HNC y HC3N además de su concentración (el rojo indica una menor densidad y el blanco una mayor).

En las zonas altas de la atmósfera de Titán se han encontrado acúmulos de estos dos gases. El misterio para los investigadores de la NASA no es el haberlos hallado, es su distribución. En ambos casos hay lugares donde la concentración es mucho mayor que en el resto del satélite y fuera de ambos polos.

En Titán los vientos siguen un patrón parecido (aunque a menor escala) que en Júpiter. En las capas medias de la atmósfera su fuerza es mayor y lo hacen de este a oeste, formando zonas similares a las bandas del gigante gaseoso pero mucho menos pronunciadas, los gases deberían estar, en un principio, mezclados y con similares concentraciones.

Si estuvieramos en la Tierra la primera explicación que se nos vendría a la cabeza para explicar este fenómeno sería la de un proceso biológico capaz de cambiar estas concentraciones, es decir la existencia de vida.

Pero fuera de nuestro planeta estos procesos pueden deberse a muchas otras causas. Los astroquímicos de la NASA no pueden afirmar que este hallazgo sea una traza de vida. Hay muchos otros procesos que pueden explicar el fenómeno, como la intensa radiación del campo magnético de Saturno que puede activar procesos en las capas altas de la atmósfera que den lugar a la formación de estos compuestos orgánicos, eso explicaría su existencia, pero no el patrón de concentración detectado.

Tenemos un mundo repleto de sustancias orgánicas muy parecidas a las presentes hace millones de años en nuestro planeta, un mundo con lagos y océanos de hidrocarburos en superficie y ahora ciertos patrones en la atmósfera que podrían parecerse mucho a lo que entendemos como un biomarcador.

La sonda Cassini pronto terminará su misión y por lo que se puede intuir su reemplazo tardará bastantes años en producirse. Y mientras el poco capital que dispone la agencia americana se dilapida en proyectos que puede nunca vean la luz. No lo entiendo…

Fuentes:
Nasa news press release

Universe Today

Nota: el blog se presenta a los premios bitácoras, si te ha gustado el post puedes votar al blog en este enlace http://bitacoras.com/premios14/votar te identificas con tu login de facebook y buscas seccion ciencia, pones milesdemillones.com y votar 🙂 Gracias

Charla: «Exoplanetas: el nuevo reto de la astronomía»

Con ocasión del primer aniversario de la Asociación de Divulgación Cientifíca de Murcia (ADCMurcia) tuve el honor de poder dar una minicharla sobre exoplanetas. Aquí está el resultado. Es de las primeras que doy ante tanta gente, no me lo tengais mucho en cuenta..

Merece la pena ver el resto de charlas. Son mucho mejores que la mía y dadas con mucho arte. Este proyecto está realizado por gente que ama la ciencia, que no obtiene nada a cambio y que además disfruta con lo que hace. Dados los tiempos que corren necesitamos mucho de estas iniciativas. Cada vez creo más en que sin ciencia no hay futuro, y ya empieza a no haber ni presente…

El aniversario contó con 8 charlas de 10-15 minutos de socios de la asociación y 1 charla de 50 minutos del galardonado con el “Premio ADCMurcia de Divulgación Científica», correspondiente a 2014, Rafael Garcia Molina.

La conferencia tuvo lugar en el Museo de Bellas Artes de Murcia (MUBAM) el sábado 21 de junio de 2014.

Este ciclo fue organizado por la Asociación de Divulgación Científica de la Región de Murcia con la colaboración del Museo de Bellas Artes de Murcia.

Puedes ver todas las charlas siguiendo estos enlaces:

Exoplanetas: el nuevo reto de la astronomía – Juanjo Gómez – https://www.youtube.com/watch?v=behDPTviIBQ

Dinosaurios en acción – Margarita Tortosa junto con Juan Antonio Tortosa – https://www.youtube.com/watch?v=c3K6k3IUQX0

Tendencias de investigación en genética en el siglo XXI – Marcos Egea – https://www.youtube.com/watch?v=Z2zF00NxLzk

Hombre de ciencia, hombre de fe – Isidoro Martínez – https://www.youtube.com/watch?v=M_ONkDUCw9k

Apaga la luz, enciende una vocación científica – Miguel Ángel Paredes – https://www.youtube.com/watch?v=KdhpykV4pP8

Pásatelo Ciencia – Melli Toral – https://www.youtube.com/watch?v=By-bpUlXBtE

Acabar con las creencias pseudocientíficas en tres cómodos pasos – Juan Carlos García-Bayonas – https://www.youtube.com/watch?v=NONSyH-elDs

La risa es una cosa muy seria – Aitor Menta – https://www.youtube.com/watch?v=jeh3uQZJjVY

Etnofísica: un paseo por la mitología de la mano de la física – Rafael Garcia Molina – https://www.youtube.com/watch?v=VnV5FNfJb-s

Evento Aniversario y Premio Anual ADCM

El año que viene más…

La Nasa encuentra un exoplaneta con cielos claros y vapor de agua

IMG_4543.JPG

Tres telescopios de la Nasa han servido a astrónomos para escrutar la atmósfera de un planeta del tamaño de Neptuno fuera de nuestro Sistema Solar.

Los telescopios usados han sido el Hubble, el telescopio espacial Spitzer y el famoso cazaplanetas Kepler. Hasta la fecha es el exoplaneta más pequeño donde se han podido caracterizar moléculas de la atmósfera.

El planeta recibe el nombre de HAT-P-11b, y está situado a 120 años luz de la Tierra en la constelación del Cisne. Tarda solo 5 días en dar una órbita a su estrella y sus cielos despejados han permitido identificar moleculas de vapor de agua en su atmósfera.

IMG_4544.JPG

No es el primer planeta en el que se halla vapor de agua aunque si el más pequeño en el que se ha encontrado. Los grandes exoplanetas de varias veces el tamaño de nuestro Júpiter son los más indicados para rastrear en busca de elementos. El reto está en ir consiguiendolo en exoplanetas con tamaños cada vez más reducido.

En el nuevo estudio se ha usado la cámara Wide Field del Hubble y una técnica llamada transmisión por espectroscopia, en la cual un planeta es observado cuando cruza por delante de su estrella. La luz del astro se filtra a través de la atmósfera del exoplaneta y si moléculas como el agua están presentes absorben parte del luz estelar dejando una huella que pueden captar nuestros telescopios. Estos datos se unen a los aportados por el Kepler en la franja de la luz visible y el Spitzer en la infrarroja.

El reto de los próximos años consistirá en poder encontrar moléculas en planetas cada vez más pequeños, con radios parecidos al de la Tierra. Y de paso que estén orbitando en la zona habitable de sus sistemas.

La nueva generación de telescopios promete dar un vuelco a nuestra comprensión del Universo.

Fuente: Nasa news

Nota: ya se puede votar al blog en la sección de ciencias de los premios bitácoras 2014. Solo pincha este enlace e identificate con tu cuenta de facebook o twitter (mejor en los botones de arriba a la derecha). Gracias!!!

Una nueva composición de imágenes de la sonda Galileo muestra un «río» helado rojizo en Europa

20140711-051929-19169522.jpg

Desde el JPL de la NASA nos llega una nueva imagen del satélite de Júpiter, Europa, uno de los lugares del Sistema Solar candidatos a albergar vida.

Es una composición de dos imágenes tomadas por el orbitador Galileo a finales de la década de los 90. Además se han aplicado nuevas técnicas de colorización para obtener nuevos datos sobre la helada y fracturada superficie del satélite.

En la foto se ilustra el contraste entre el terreno que contiene agua helada pura (el terreno blanco azulado) y la parte de la superficie saturada por sales y otros elementos. El material rojizo que forma una banda ancha en el centro de la imagen, y otras más estrechas que acuden a la central como afluentes de un río, posiblemente contenga material del océano de agua que existe en el subsuelo, la mayor parte sales hidratadas como sulfato de magnesio y ácido sulfúrico.

Se cree que está parte de Europa es más abrupta y accidentada que el resto del satélite y que debe este color característico al hecho de haber estado en contacto con el océano interior cuando se formó.

Localizaciones como esta son las que buscaríamos a la hora de lanzar una sonda capaz de tomar tierra. Es donde podríamos tener acceso al material del subsuelo con relativa facilidad. Incluso aun podría existir algún tipo de comunicación entre la superficie y el interior de la luna.

Como veis todavía intentamos exprimir cualquier dato que aportó la mítica sonda Galileo sobre Europa. Eso fue el siglo pasado. Seguimos esperando nuevos ojos que nos cuenten nuevas historias sobre la fascinante luna joviana.

Fuente: NASA JPL

Los sistemas con dos estrellas son más propicios para la vida

20140506-203820.jpg

Nuestra especie está acostumbrada a mirar al cielo y ver un solo Sol brillando en su firmamento. Pero esa no es la norma en nuestra galaxia, en nuestro vecindario cósmico abundan los sistemas binarios y los triples.

De siempre hemos asociado el hecho de orbitar una solitaria estrella con el ideal de habitabilidad.

Ahora un nuevo estudio habla sobre una mayor probabilidad de albergar vida en lunas cuyos planetas orbiten sistemas binarios.

Dos estrellas entrelazadas gravitatoriamente pueden amortiguar, en parte, los vientos y la radiación de cada una de ellas, creando un ambiente más permisivo para la vida e incrementando la zona de habitabilidad alrededor suya.

Los resultados se han presentado en la 223 reunión de la Sociedad Astronómica Americana, y se han basado en los datos recogidos por el telescopio espacial Kepler.

Una estrella jóven y activa emite grandes cantidades de radiación que podría barrer todo tipo de vida que surgiera en las superficies de planetas cercanos. Si a esta estrella le sumamos una compañera estos devastadores efectos podrían suavizarse.

Algunas binarias están muy separadas entre sí, en estos casos un planeta orbitando cualquiera de las dos estrellas no se beneficiaría de la asociación. El estudio se ha centrado en aquellos casos en los que ambas estrellas orbitan con una frecuencia entre 10 y 60 días terrestres, y que además posean planetas orbitando al sistema binario, los llamados sistemas circumbinarios.

20140506-203546.jpg

Los efectos favorables para la vida en estos sistemas no solo se reducen a la disminución de los eventos negativos, como el aumento de la radiación o de los potentes vientos estelares que pueden dejar desprovista de atmósfera los planetas cercanos. También hablamos de que al sumar los brillos de ambas estrellas alejamos la distancia a la que empieza la zona de habitabilidad (aquella donde puede existir agua en estado líquido en la superficie del planeta), disminuyendo la probabilidad de que los mundos candidatos puedan ser esterilizados de toda vida posible.

Según la reciente investigación si nuestro sol tuviera una compañera, quizás habría agua en la atmósfera de Venus, haciéndolo potencialmente habitable, incluso el clima en la Tierra sería aún menos extremo y más húmedo.

Se aproxime a la realidad o no esta hipótesis lo que empezamos a tener claro es que la variedad de sistemas solares que existen a lo largo del Universo es inmensa, y el nuestro no es ni el más común ni el más favorable para la potencial habitabilidad, quizás otros sistemas estén más preparados para la vida con dos o tres planetas o lunas habitadas, quizás…

Fuente: space.com

Una «línea de costa» de Titán

20120909_shoreline_pascal

Línea de costa de la luna Titán (NASA/ESA/ Rene Pascal) (Click para ampliar)

Como bien recordaréis un 14 de Enero de 2005 la sonda Huygens, fabricada por la ESA, aterrizó en un satélite de Saturno llamado Titán. Unos días antes se había separado del orbitador Cassini con el que había realizado el largo viaje que separa la Tierra del gigante gaseoso.

Mucho hemos hablado de Titán en este blog, esta entrada es solo para contemplar una imagen que me fascina. Es una composición de varias tomas de la sonda a medida que descendía por la atmósfera de Titán, está retocada y editada por René Pascal,… y es enormemente bella.

Es una «línea de costa» situada en la zona conocida como Xanadu. Es una vista que solo podemos admirar en nuestro planeta y en Titán. Ningún otro planeta ni satélite conocido tiene extensiones líquidas estables en su superficie.

Si nos fijamos en la parte de tierra, podemos ver como a izquierda y derecha de la imagen desembocan varías desembocaduras de ríos. Vemos acantilados, pequeños islotes junto a la línea de costa, acumulaciones de sedimentos que vendrán arrastrados las por los ríos que transportan material desde las tierras altas.

Solo pensar en como se originó la vida en la Tierra hace millones de años y ver esta imagen estremece. La química y las condiciones eran diferentes, pero no tanto. Materiales orgánicos situados en lechos poco profundos de mares o de ríos, con miles de años por delante para intentar prosperar, protegidos por una densa atmósfera… y no estoy hablando de la Tierra.

Sabemos que existe, sabemos que hay un lugar así en nuestro sistema solar. Tenemos que ir.

Fuente: http://www.planetary.org/multimedia/space-images/saturn/Panorama-of-the-Shoreline-on-Titan.html

Nota: a raíz de un comentario de @Tokaidin he estado mirando más fuentes y he de admitir que tiene razón. En la versión inglesa hablan de «shoreline», línea de costa en español, pero lo ponen entre comillas. El tono más oscuro representa a una llanura. El resto de la imagen si está correctamente descrita con los recorridos fluviales y el terreno abrupto. Mis disculpas por el fallo de traducción, a veces la imaginación te juega malas pasadas. Gracias a @tokaidin por la apreciación.

Estas son las verdaderas imágenes de los lagos de Titán. Sigo pensando que son preciosas.

20140128-220403.jpg

20140128-220720.jpg

Buscando el planeta perfecto para albergar vida

original

Un nuevo estudio liderado por astrobiólogos empieza a marcar los parámetros que debemos buscar en otros planetas a la hora de decidir si son potencialmente habitables o no.

La primera premisa que se ha dispuesto es que nuestro hogar, la Tierra, no es el mejor ejemplo de habitabilidad a seguir, se introduce el concepto de mundos superhabitables, planetas mucho más preparados para albergar vida que el nuestro. Quizás por ahí es por donde debemos empezar a buscar.

El concepto de zona de habitabilidad estelar, del que ya tanto hemos hablado por estos lares, se está viendo atacado por varios flancos dentro del ámbito de la astrobiología. Hace tiempo hablábamos en el blog que la definición clásica que hemos usado durante mucho tiempo no era de mucha utilidad.

Habitable_Zone

Literalmente la wikipedia habla de que «se denomina zona de habitabilidad estelar a la región alrededor de una estrella en la que, de encontrarse ubicado un planeta(o satélite) rocoso con una masa comprendida entre 0,6 y 10 masas terrestres y una presión atmosférica superior a los 6,1 mb correspondiente al punto triple del agua, la luminosidad y el flujo de radiación incidente permitirían la presencia de agua en estado líquido sobre su superficie» , todo esto era útil cuando teníamos apenas unos pocos exoplanetas descubiertos y ninguna opción de hallar exolunas con nuestra tecnología. Ahora tenemos mas de mil planetas catalogados y otros tantos pendientes de confirmar, y entre ellos algunos candidatos a exolunas (el telescopio espacial Kepler lo cambió todo).

Ahora hablamos de estudios donde la vida puede emerger fuera de esta zona de habitabilidad, empezamos a definir zonas donde la vida es capaz de surgir y desarrollarse, y no tiene porque parecerse en nada al único ejemplo que conocemos. Hablamos de zonas habitables en el subsuelo de planetas donde la superficie no sea apta para soportar vida, un subsuelo protegido de las inclemencias de temperaturas y radiación extremas. Hablamos de lunas orbitando gigantes gaseosos u otros mundos inhabilitados para la vida, hablamos incluso de mundos orbitando estrellas dentro de gigantes cúmulos estelares,… como veis la cosa se va complicando.

Y ahora tenemos una nueva definición para añadir a las anteriores, el concepto de superhabitabilidad.

En el último artículo los astrobiólogos Rene Heller y John Armstrong describen al menos 18 características que deben tener estos mundos diseñados a la perfección para la vida ( y no todas coinciden con las de nuestro planeta).

Hablan de planetas rocosos con masas de 2 a 3 veces superior a la del planeta Tierra, con largos periodos de actividad tectónica que permitan que los ciclos que dependen de sustancias como el carbono y el silicio estén activos durante largos periodos de tiempo.

Dentro de esta fórmula magistral para crear un mundo perfecto para la vida también se incluyen campos magnéticos que actúen a modo de escudo contra las radiaciones externas al planeta. Grandes áreas de superficie que permitan el desarrollo de la biodiversidad, combinadas con humedales o mares poco profundos en sus proximidades (recordemos que en la Tierra la vida pudo originarse en este tipo de zonas).

Una distribución óptima entre las superficies terrestres y los vastos océanos también favorecería este concepto de superhabitabilidad, los supercontinentes no son propicios para la vida ya que pueden formarse grandes áreas desérticas en su interior y también pueden influir en el clima global del planeta.

Y todo rodeado de una atmósfera más gruesa que la de nuestro planeta, que permita unas temperaturas un poco más cálidas.

Todas estas características darían como resultado mundos o lunas con una biodiversidad mucho mayor de la que conocemos en nuestro planeta.

Los mundos superhabitables deberían orbitar estrellas ligeramente más pequeñas que nuestro Sol, las llamadas enanas de tipo espectral K, con una expectativa de vida mucho más larga que la de nuestro astro, y además se verían favorecidos si en su sistema solar existen otros mundos habitados, lo que favorecería la panspermia o paso de vida entre diferentes mundos.

Después de varías características más los autores concluyen que la Tierra es solo «marginalmente» habitable, cumple con algunos de los criterios de habitabilidad pero no con todos.

Creo que todo esto solo es el principio, definir donde puede surgir la vida o donde no puede ser tan difícil como definir lo que la propia vida es. Solo tenemos un ejemplo y solo un planeta donde se ha producido esa maravillosa singularidad. A medida que encontremos distintas formas de vida todos estos conceptos irán a la basura para ser reemplazados por otros, o quizás no. Solo lo vamos a saber de una manera, explorando…

-Fuente: Superhabitable worlds, Astrobiology, Jannuary 2014